#### Presentation I

# Development of Environmentally Friendly Concrete for Realizing Decarbonized Society SUSMICS®-C / DAC Coat®

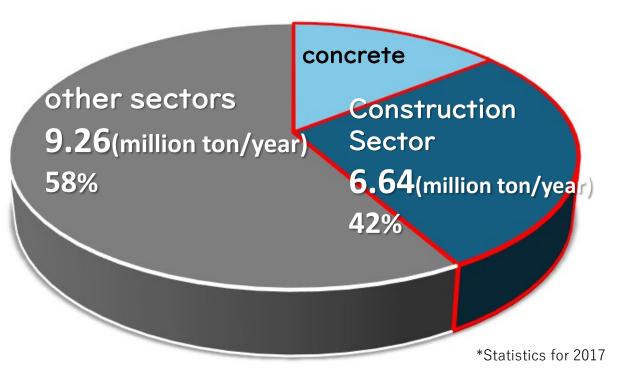
Shuji Kakegawa,

Managing Officer, Director of the Technology Research Institute

### Sustainability Management Policy



The Group's Environmental Vision "SHIMZ Beyond Zero 2050"

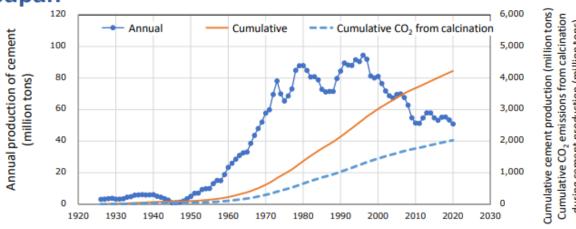

We are committing ourselves to must achieve net zero emissions, a final waste zero, and zero negative impact on the environment in 2050

Mid-Term Business Plan <2024-2026>
Decarbonization-related KPIs (2026 Targets)

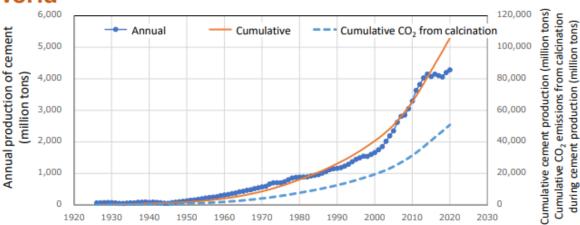
Reduction rate of CO2 emissions in the Construction Business (compared with FY2023)

≥ I 2%

## The Situation Surrounding Concrete Japan's Total Material Input




The construction sector accounts for 42%


 $\rightarrow$  Of which concrete accounts for 34%

From Moonshot Project materials (<a href="https://moonshot-c4s.jp/en/">https://moonshot-c4s.jp/en/</a>)

#### Cement Production Volume and CO<sup>2</sup> Emissions Japan





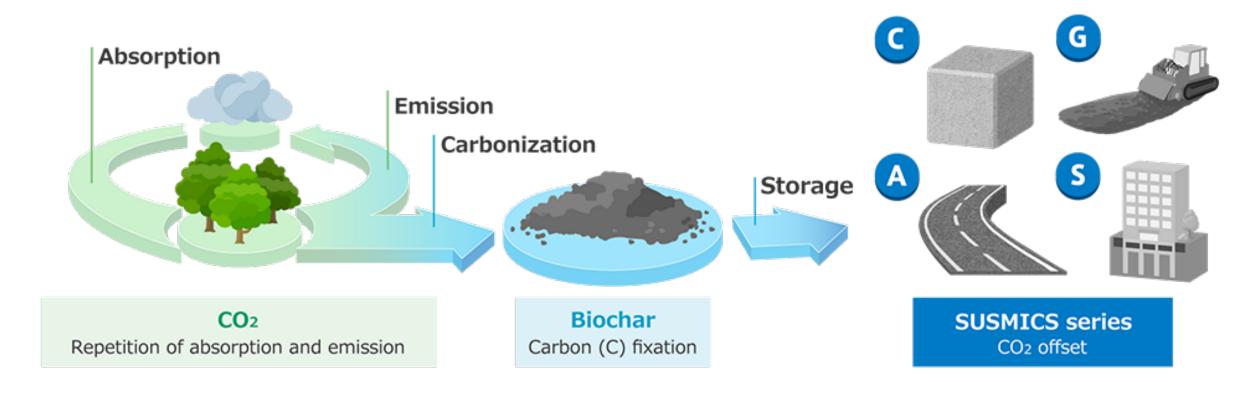


World: Over 50 billion tons

Japan: Over 2 billion tons

of CO2 are emitted

#### Classification of Environmentally-Friendly Concrete








Concrete (as a material) makes a significant contribution to decarbonization.

#### Carbon Storage by Biochar



- By carbonizing biomass,  $CO_2$  absorbed from the atmosphere during the course of tree growth is fixed as long-term stable carbon in biochar.
- By incorporating biochar into concrete,  $CO_2$  absorbed by trees is fixed within the concrete.

#### Features of SUSMICS-C

Highly Versatile

No special equipment required; production possible at ready-mix plants nationwide Workability and quality (strength, durability, etc.) **equivalent to general concrete** 

Enables Efficient CDR (carbon dioxide removal)

 $CO_2$  fixation capacity per kg is over 8 times that of calcium carbonate Biochar ( $CO_2$  /C): 3.6 kg- $CO_2$  /kg Calcium Carbonate ( $CO_2$  /Ca $CO_3$ ): 0.44 kg- $CO_2$  /kg

Can Be Used In Combination with Low-Carbon Cement

Can be combined with low-carbon cements such as Type B and Type C blast furnace cement enables **carbon neutrality and carbon-negative** outcomes



### SUSMICS-C: Field Applications and Third-Party Verification

| Field Applications |
|--------------------|
| • •                |

|                                     | Civil Engineering                    | Building Construction                 |
|-------------------------------------|--------------------------------------|---------------------------------------|
| Emissions Reduction Rate            | 99%                                  | 111%                                  |
| Construction Volume                 | $34.5 \mathrm{m}^3$                  | 5 I Om <sup>3</sup>                   |
| CO <sub>2</sub> emissions reduction | Approx. <b>4.7</b> t-CO <sub>2</sub> | Approx. <b>62.8</b> t-CO <sub>2</sub> |



Third-Party Verification

Carbon negative verification by Socotec Certification Japan Co., Ltd.





https://www.nies.go.jp/whatsnew/2025/ua88o2000009njje-att/ua88o2000009nk3e.pdf

#### **Expansion of the SUSMICS Series**

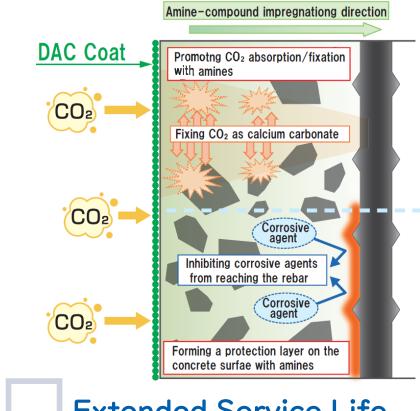




Expanding applications of biochar in various construction and civil engineering materials



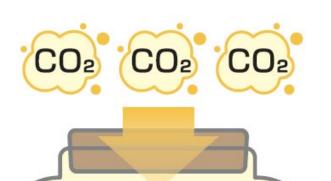



## DAC Coat Mechanism: The Development of the World's First Technology

(Developed in Collaboration with Hokkaido University)






Amine compounds with high CO<sub>2</sub> absorption capacity are impregnated into concrete The concrete structure absorbs & fixes atmospheric CO<sub>2</sub>



## **Extended Service Life**

Anti-corrosion effect of amines improve the rebar's corrosion resistance Enhancing the durability of RC structures

#### The Effects and Benefits



Artificial Japanese cedar forests 10,000m<sup>2</sup>

\*The CO<sub>2</sub> fixation amount in artifical

Japanese cedar forests is according to the Forestry Agency

CO<sub>2</sub> fixation amount: approx. 9 tons/year



## 10 piers applied with DAC Coat

(equivalent to 3,000m<sup>3</sup> concrete)

\*Calculated by assuming 30kg/m³ of concrete structure's CO<sub>2</sub> fixation amount \*Assuming maintenance (re-application of DAC Coat) every 10 years

CO<sub>2</sub> fixation amount: approx. 9 tons/year



1.5 times or more increase (indoor test results)

Inhibiting the Rebar's
Corrosion Rate
Corrosion rate

Approx. 1/50th

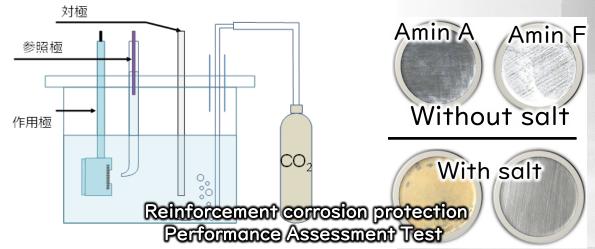
Improving the Rebar's Corrosion Resistance

Corrosion resistance

Approx. 1.5 times

#### **DAC Coat Effect Verification**

Assessment of CO<sub>2</sub> Absorption Effectiveness in the Field


Evaluating 30 types of amine compounds in the field Approximately 2.5 to 4 times greater  $CO_2$  fixation promotion effect confirmed compared to untreated surfaces

Assessment of Reinforcing Steel Corrosion Protection Performance

Simulating the carbonation environment (pH)inside concrete by bubbling CO<sub>2</sub> gas into Ca(OH)<sub>2</sub> solution **Corrosion protection effects** confirmed for many amines **in carbonation environments** 

Amines exhibiting high corrosion resistance against salts have also been identified



