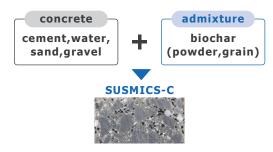
SUSMICS-C

Concrete mixed with biochar for Carbon Storage

SUSMICS-C: **SU**stainable + **SMI**("Charcoal" in Japanese) + **C**arbon **S**torage - **C**oncrete


Summary

By using biochar as an admixture in concrete, carbon derived from photosynthesis can be stored inside the concrete material contributing to carbon neutrality. In addition, carbon negativity can also be achieved by using blast furnace slag cement.

Biochar: A Key Material for Achieving Global Climate Goals

SUSMICS-C is a concrete mixed with biochar made from sawdust which is usually discarded when sawing the wood. Carbon derived from CO₂ absorbed by trees through photosynthesis is settled when it is carbonized and is stored for a long period of time without returning to the atmosphere.

Cement, the main ingredient of concrete emits large amounts of CO_2 during its production. Analysis of the biochar mixed in SUSMICS-C shows that its carbon content is approximately 90%, and by balancing the CO_2 emissions from cement with carbon storage amount, carbon neutrality can be achieved.

Material Properties and Versatility are Equivalent to Concrete using OPC

SUSMICS-C can be manufactured in a typical ready-mixed concrete plant. It has the same workability as concrete using Ordinary Portland cement (OPC) and can be pumped and placed at construction sites. Furthermore, it also has the identical compressive strength as OPC concrete and can ensure the strength required for structures.

Blast Furnace Slag (BFS) Cement: Achieving Carbon Negativity through Material Combinations

OPC, which is used in general concrete, emits about 200 to 300kg/m^3 of CO_2 during its production. By using blast furnace slag (BFS) cement, which has a lower carbon footprint than OPC, CO_2 reductions can be achieved. Eventually carbon negativity can be attained by compensating the CO_2 emissions of other materials with the amount of CO_2 stored in biochar.

Mix proportion: W/C=55%, slump value 12cm [kg/m³] 250 CO₂ reduction 240 200 CO₂ storage with biochar 150 emissions CO₂ storage with biochar 100 95 CO 50 O **Carbon Negativity Zone** -50 0 +30 +60 Mixing [kg/m³l amount of Biochar Types of **BFS** cement **BFS** cement OPC (Type B) (Type C) cement

Type B: Cement in which approximately 40% of OPC is replaced with ground granulated blast furnace slag powder

Type C: Cement in which approximately 60% of OPC is replaced with ground granulated blast furnace slag powder

Application to Actual Construction

 $34.5 m^3$ of SUSMICS-C containing $60 kg/m^3$ of biochar and BFS cement type B (BB, JIS R 5211) was applied to the temporary concrete pavement for construction of a road surface. When compared to normal concrete, it was confirmed that it had reduced CO_2 emissions by 99% and that workability and quality of finished surface were equivalent to those of normal concrete. This proves that SUSMICS-C can be applied in the construction of actual structures.

Concrete placing

Finished surface after construction